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Transmission and scattering of a Lorentz gas on a slab
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We perform numerical scattering experiments on a Lorentz array of disks centered on a triangular lattice
with L columns, and study its transmission and reflection properties. In the finite horizon case, the motion of
the particles may be modeled as simple one-dimensional random walks with absorbing walls for which the
scaling of the transmission and reflection coefficients are known, and agree with those found numerically. In
the infinite horizon case the analogy with a simple diffusive process is no longer valid. In this case we compare
our results to those expected for a one-dimensional Le´vy walk, again with absorbing walls, for which loga-
rithmic corrections to the scaling relations appear. These corrections are consistent with the numerical results.
The scaling withL and the symmetry properties of the forwardsT(f) and backwardsR(f) differential cross
sections are also studied, and some of their salient features are discussed.@S1063-651X~98!05310-0#

PACS number~s!: 05.40.1j, 05.45.1b, 05.60.1w
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I. INTRODUCTION

The Lorentz gas is an ensemble of noninteracting po
particles which move freely with elastic reflections fro
fixed scatterers@1#. It is a basic model for linearized kineti
equations@2#, and its ergodic properties are well known@3#.

In this paper we present the results of numerical exp
ments in which a large number of particles are incident on
array of disks centered on a triangular lattice. The partic
are launched initially either in the1x direction or isotropi-
cally toward the array, and are reflected elastically from
scatterers. The array of disks is finite in thex direction and
infinite in they direction, so we speak of a ‘‘slab’’ of scat
terers. Our slab is characterized by two parameters; the w
of the slab, that is, the numberL of columns of scatterers
and the separationw between them~the disk radius is unity!.
The quantities that are measured are the transmissionT and
reflection R coefficients, the mean survival timet of par-
ticles in the slab and the transmittedsT and reflectedsR
differential cross sections. These quantities are analyze
functions of the parameters characterizing the slab.

If the separation between scatterersw in a triangular lat-
tice is small,w,wc50.3094. . . , thelength of free motion
of the point particles is bounded, that is, the particles ‘‘se
a finite horizon. On the other hand, whenwc,w the length
of free motion may be unbounded, the particles see an
nite horizon. In this work we study the scattering propert
in both situations, and analyze our results in terms of
characteristic motion of the particles in each case. In
finite horizon case, the motion of the particles is known to
diffusive @4# and the diffusion coefficient can be estimat
with ergodic arguments@5#. Velocity correlation functions
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have been shown to decay exponentially@4#, as confirmed by
numerical experiments@6#. In contrast, for the infinite hori-
zon case the diffusion coefficient diverges logarithmica
@7,8#, and correlation functions have a power law decay@9#.
We find that there are also fundamental differences in
scattering properties for each case.

Lorentz gases in finite size geometries have also b
introduced elsewhere, with the aim of studying escape ra
and their relation to transport coefficients and fractal rep
lers @10#. An account of these results, together with a form
lation of the problem in terms of flux boundary condition
can be found in Ref.@11#.

In Sec. II we introduce all the definitions, and discuss
detail the numerical experiments for the case of a finite
rizon. Section III draws an analogy between the Lorentz sc
tering experiments in the finite horizon case and the beha
of one-dimensional diffusive motion with absorbing boun
aries. This serves as a basis for an explanation of the
served scaling laws for transmission coefficients and surv
times. In Sec. IV we present the results for the infinite ho
zon case when the particles are launched initially in thex
direction. These show logarithmic corrections to the scal
laws, which are consistent with considering the motion of
particles within the slab as a Le´vy walk. In Sec. V we discuss
angular dependences and symmetries of the transmission
reflection differential cross sections. In Sec. VI we discu
how some of the scattering properties are affected by sen
the particles isotropically, i.e., with an incidence angle u
formly distributed between2p/2 andp/2. A modified ran-
dom walk model displaying these same differences is a
briefly discussed. Finally, Sec. VII is devoted to discuss
of the results and conclusions.

II. SCATTERING WITH A FINITE HORIZON

The scatterers we consider are disks of unitary radius c
tered on a triangular lattice as shown in Fig. 1. The dista
4254 © 1998 The American Physical Society
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PRE 58 4255TRANSMISSION AND SCATTERING OF A LORENTZ . . .
between neighboring centers is 21w, and the centers lie
alongL lines parallel to they axis. The slab is finite in thex
direction and infinite in they direction. A large numberN of
particles are incident from the left parallel to thex axis with
unit speed. The particles move freely except for elastic c
lisions at the boundary of the disks. In the experiments,
dynamics is solved by considering the motion in the elem
tary Wigner-Seitz hexagonal cell where opposite sides
identified. Each incident particle has a different impact p
rameterb, defined here as the distance between the in
position and the horizontal line passing through the cente
the scatterer in the Wigner-Seitz cell. Due to the symme
of the slab, it is sufficient to considerb between 0 and 1
1w/2. The trajectory in the slab is obtained by unfolding t
orbit in the Wigner-Seitz cell. The cases where particles
incident with an angle different from zero, and the effect
isotropic incidence will be briefly discussed in Sec. VI.

In the finite horizon case, 0,w,wc5(4/)22)
50.3094. . . , the particles that enter the scatterer cann
travel long distances without suffering collisions. In the i
finite horizon casewc,w the particles may travel arbitrarily
far between collisions, due to the opening of infinite cor
dors. If wc,w,2, the infinite corridors lie at angles ofp/6,
p/3, andp/2. We will be mainly considering particles inc
dent parallel to thex axis that cannot cross the slab witho
collisions whenw,2.

Since the slab is infinite in they direction and the colli-
sions are elastic, every particle that enters the slab m
eventually exit it, except for a set of measure zero wh
goes asymptotically to periodic orbits inside the slab~we
disregard all zero measure sets hereafter!. Thus, in practice, a
particle that enters the slab collides with some of the
stacles, and will be ultimately transmitted or reflected, le
ing the slab with an anglef measured with respect to the1x
direction. Particles are transmitted if they exit the slab fro
the right (ufu,p/2), and are reflected if they exit from th
left (ufu.p/2).

A first characterization of the system is through the co
putation of the transmissionT and reflectionR coefficients.
The former is defined as the fraction of particles that p
through the slab and exit on the right, and the latter as
particle fraction that exits the slab on the left~obviously T
1R51). A finer quantity is the differential scattering cro
sections defined by saying thats(f)df is the fraction of
particles scattered betweenf andf1df. We can separate
this quantity in the transmittedsT and reflectedsR differen-

FIG. 1. Slabs of scatterers in a triangular array.~a! Finite hori-
zon,w50.3, with L55. ~b! Infinite horizon,w51, with L55.
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tial scattering cross sections by consideringufu,p/2 and
ufu.p/2, respectively.

In Fig. 2 we show the dependence of the transmiss
coefficientT on L for the finite horizon case. These resu
are consistent with the scaling lawT;L2b, where b'1
independently ofw. This behavior will be justified in Sec
III, drawing from an analogy with random walks. SinceR
512T andT scales to zero withL,R does not depend onL
for L@1. Another quantity of interest is the mean surviv
time inside the slabt. This average time is evaluated over a
the N incident particles no matter if they are transmitted
reflected. We find thatt;Lg with g'1, as we show in Fig.
3.

III. DIFFUSIVE BEHAVIOR IN FINITE SIZE SYSTEMS

In the finite horizon case, rigorous results, convincing e
dence, and plausible arguments have been set forth ind

FIG. 2. Logarithmic plot of the transmission coefficientT as a
function of the size of the systemL, for w50.1 andN543107,
w50.15 andN523107, and for w50.2, 0.25, and 0.3 withN
5107. The full lines are the least square fits, all of them compati
with the theoretical predictionT;L21 to within 1%.

FIG. 3. Logarithmic plot of the survival timet vs L for the same
values ofw andN as in Fig. 2. The full lines are the least squa
fits, all of them compatible with the theoretical predictiont;L to
within 1.6%.
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4256 PRE 58HERNÁN LARRALDE et al.
ing that the motion of the particles in the Lorentz system c
be accurately modeled as a simple random walk@4,5#. In its
simplest version the particles can be viewed as hopping
tween adjacent ‘‘cages’’ in an essentially uncorrelated fa
ion, and staying in each cage for a well defined average ti
For the case under study in this paper it is not even neces
to consider the random walk process as occurring on a t
dimensional lattice, since the quantities we are intereste
can be calculated from the projection of the walk onto
finite directionx.

While the discrete one-dimensional random walk on a
nite lattice can be described completely@12,13#, such a de-
tailed comparison between the two systems cannot hold
the random walk is an analogy to the Lorentz system,
best we can realistically expect to determine from it is
scaling behavior of the quantities under study. With this
mind, we choose to evaluate the transmission and reflec
coefficients for the simple random walk problem via the d
fusion equation, with a numerically determined phenome
logical diffusion constantD. This equation describes th
evolution of the coarse grained particle density in the sys
and is expected to be valid when the system size is m
greater than the root mean square~rms! step length. Once
again, since the slab is translationally invariant along thy
axis, the coarse grained particle density obeys a diffus
equation alongx.

To estimate the reflection and transmission coefficie
within this approximation, we require the solution of the d
fusion equation with absorbing boundary conditions ax
50 andx5X, and a constant unit input flux at sitea. In the
steady state, the magnitude of the fluxes at 0 andX will give
the splitting probabilities, i.e., the probability that a partic
injected at positiona will be absorbed at the origin or atX.
In our scattering system the particles are incident on the
which can be thought of as having the injection pointa near
the origin. Then the calculation outlined above yields t
transmission coefficient

T5a/X. ~1!

To estimate the mean survival time of the particles with
the slab, we recall that within the diffusion approximatio
the survival time for a random walker starting at positiona
satisfies the equation@13#

D
d2t~a!

da2 521, ~2!

with the conditionst(0)5t(X)50, whereD is again the
diffusion constant of the process. Thus

t~a!5
1

2D
a~X2a!, ~3!

and if the injection point is taken to be close to the orig
(a!X), we obtain

t;aX/2D. ~4!

These results can also be obtained on a more general
ing through Wald’s identity@13#, and are expected to hold a
long as the rms step size of the random walk is sm
n
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compared to the system sizeX, and the number of step
given by the random walker scales linearly with time~i.e.,
there are no long tail waiting time distributions!.

We can identify the quantities appearing in Eqs.~1! and
~4! corresponding to the Lorentz scattering experiment. T
diffusion coefficientD is computed in Ref.@5# in a random
walk approximation, and numerically through the Gree
Kubo relation. The lengthX is related tow and L by X
5L(21w))/2, and thus the penetration lengtha can be
determined by the slope of the dependence oft on L as in
Fig. 3. The results are consistent with the distance betw
traps (21w)/), as defined in Ref.@5#, for small values of
w ~where the diffusion constant predicted in the rando
walk approximation also agrees with the numerically det
mined one!.

IV. INFINITE HORIZON

When the horizon becomes infinite the analogy to
simple diffusive process breaks down. This occurs as a c
sequence of the opening of infinite corridors between s
terers in which the particle is capable of traveling very lar
distances between collisions. The distribution of the len
of these sojourns,p(r ), has been shown to decay asr 23

when r→` by both numerical results and theoretical arg
ments@7,14,8,15#. Thus the rms step length diverges, and t
diffusive approximation described in Sec. III breaks down

If we insist on making a random walk description of th
system, we are now led to consider a random walk with
distribution of step lengths without second moment~generi-
cally called ‘‘Lévy flights’’ @13,16#!. Here one sometimes
makes the distinction between a discrete time process
which each step is selected from a power-law distribution
lengths, but always takes a fixed time and the so-called L´vy
walk in which each step takes a time proportional to
length. This latter, while more relevant to the case we
discussing, is not significantly different from the Le´vy flight
if the first moment of the step size distribution exists, as
certainly does in our case. We shall therefore ignore the c
siderable complications this causes and often identify ti
with the number of jumps or collisionsn.

In contrast to the diffusive case, the derivation of t
transmission coefficient in the case of Le´vy flights appears
not to have been treated in the literature. We present
argument which leads to a scaling prediction which see
reasonable for general Le´vy flights, and specialize it to the
case we are concerned with.

A random walker with step distribution given byP(r )
;r 2(11a) travels a typical distance@16#

j2;H t2/a

t ln t
t

for 1,a,2
for a52
for a.2

in time t. If 0,a,2 we have a Le´vy flight.
If we assume that the particle is initially at a pointa

sufficiently near the origin (a!X), then we can invoke
Sparre-Andersen’s theorem@12#. This theorem states that th
probability that the walker steps for the first time to the le
of the pointa at thenth step is a universal functionp(n),
which is completely independent of any of the properties
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P(r ), as long asP(r ) is symmetric and continuous. Thi
distribution is found to decay asp(n);n23/2 for any kind of
unbiased walk whatsoever, in particular for the Le´vy flights
we are concerned with. This allows us to estimate straig
forwardly the behavior of Le´vy flights both as regards the
transmission and the mean survival time in the interval c
sidered.

The scaling behavior of the transmission coefficient o
Lévy walk across a finite system of lengthX can be esti-
mated as follows: Denote byta(X) the time required for the
walker to travel a distance of orderX with appreciable prob-
ability. The transmission coefficient is then the probabil
that the walker never steps left of the origin duringta(X).
From the above scaling relation,ta(X) is expected to scale
as Xa for 1,a,2, asX2/ln X for a52 and asX2 for a
.2, which corresponds to normal diffusion. Then, in term
of ta(X), the transmission coefficient is given by

T~X!; (
n>ta~X!

`

p~n!;E
ta~X!

`

t23/2dt;1/Ata~X!. ~5!

For a.2 we therefore obtain the behavior of the ordina
diffusive case treated in Sec. III. In particular, for our infini
horizon Lorentz slab, we expectT(X);Aln X/X.

As for the survival time, it is estimated in a similar wa
The probability of leaving the interval@0,X# at time n is
given byp(n) as long asn is not so large that leaving at th
right hand side becomes appreciably likely. This occurs
times of the order ofta(X). This reasoning gives, for th
mean first exit timet,

t; (
n51

ta~X!

np~n!;Ata~X!, ~6!

which implies thatt(X);X/AlnX
The prediction for the probability distributionp(n) of

leaving the slab to the left aftern collisions based on the
Sparre-Andersen theorem can be tested for the Lorentz
it is valid both for the finite horizon case and for the infini
horizon. In Fig. 4 we show this distribution as obtained fro

FIG. 4. The probability distributionp(n) of leaving the system
to the left aftern collisions, for w51.5, and from left to rightL
5100, 500, 1000, and 1500 andN5107. The Sparre-Andersen
scaling result is shown by the dashed lines.
t-

-

a

s

t

as;

the simulation forw51.5 ~infinite horizon! together with the
Sparre-Andersen scaling law. The agreement is good e
for small values ofn.

The scaling laws for the transmission coefficient and
the mean survival time can also be also tested for the Lore
gas in the infinite horizon case. In Fig. 5 we show (TL)2 for
a set ofw values as a function of ln(L). According to our
theory (TL)2; ln(L) for wc,w. In Fig. 6 we show (t/L)2 as
a function of ln(L) in order put into evidence the predicte
logarithmic correction.

Runs were also carried out at other fixed incidence ang
and the same features as described above were obtained
have thus shown that, given a fixed angle incidence,

FIG. 5. The logarithmic correction toT is shown by plotting the
quantity @„LT(L)…22„100T(100)…2#/„100T(100)…2 vs ln(L) for w
50.1 with N543107, and w50.6, 1.0, 1.5, and 2.0 withN
5107. Straight lines with nonzero slope, indicating the logarithm
correction, are expected forw above the infinite horizon. The* ’s
correspond to isotropic incidence, discussed in Sec. VI, withw
51.5 andN553106. The lines are meant as a guide to the eye

FIG. 6. The logarithmic correction tot is shown by plotting the
quantity @„L/t(L)…22„100/t(100)…2#/„100/t(100)…2 vs ln(L) for
the same values ofw andN as in Fig. 5. Again, straight lines with
nonzero slope are expected forw above the infinite horizon. The* ’s
correspond to isotropic incidence, discussed in Sec. VI, withw
51.5 andN553106. The lines are meant as a guide to the eye
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opening of the horizon appears to produce logarithmic c
rections to the scaling laws present for finite horizon. T
feature is shared by the behavior of other quantities wh
also present logarithmic corrections, such as the diffus
coefficient.

V. ANGULAR DEPENDENCE OF FORWARD AND
BACKWARD SCATTERING

We have already observed that for fixed incidence an
the transmission coefficient scales as 1/L in the finite horizon
case, whereas it scales asAln L/L in the case of infinite ho-
rizon. It is also instructive to look in somewhat greater de
at the angular distribution of the transmitted and reflec
particles~this is what is also done in chaotic scattering e
periments with fewer scatterers@17#!. We definesR(f) as
the density of particles reflected at anglef andsT(f) simi-
larly for the transmitted particles. Due to the symmetryf
→2f the range off will be from 0 to p/2 for transmitted
particles, and fromp/2 to p for those that are reflected. A
these distributions are also dependent onL, we further pro-
pose that in the finite horizon case they can be expande

sR~f!5aR~f!1
bR~f!

L
1¯ ~7!

and

sT~f!5
bT~f!

L
1¯ . ~8!

The leading term in the transmission cross section is z
since there is no transmission for infiniteL. The following
relation has then been found to hold in all cases for su
ciently largeL ~see Fig. 7!:

bR~f!52bT~p2f!. ~9!

This symmetry relation can be understood as follows: Im
ine that the slab is subjected to a continuous flow of partic
with identical distributions incident fromboth sides of the

FIG. 7. The quantitiesbT(f/p) ~d! and2bR„(p2f)/p… ~n!
vs f/p for w50.3 andN5107. The values forbT are extracted
from data withL5100, and those forbR are determined by sub
traction of data withL5200 and 100.
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sample. If we now look at the distribution of angles of th
particles which go to the left in these circumstances, it
given by the superpositionsT(p2f)1sR(f)5aR(f)
1@bR(f)/L#1@bT(p2f)/L#1¯ . Now, by symmetry,
the above setup is equivalent to having particles incid
only from the left and a reflecting wall at the middle of th
sample. However, from the fact that a particle traveling de
into the slab eventually loses memory of its original inc
dence direction, it follows that the trajectory of a partic
reflected on the wall is indistinguishable from the trajecto
of a particle traveling in a semi-infinite system and even
ally returning across the position of the wall~which occurs
with probability 1!. Thus, given that the correlation with th
initial incidence is small enough, the system with the refle
ing wall will not show any great difference from the sem
infinite system (L5`) as far as the angular distribution o
its particles is concerned. This then allows one to derive
identity

aR~f!5aR~f!1
bR~f!1bT~p2f!

L
1¯ , ~10!

from which the result follows. Numerically, this is quite we
borne out both in the case of finite~Fig. 7! and infinite ho-
rizon ~Fig. 8!.

In the case of an infinite horizon, another striking featu
of the angular distribution function is found: there is a cle
peak in bT around the valuefc5p/6, as well as a corre-
sponding dip inaR around the valuefc55p/6 ~see Fig. 9!
which are the angles the infinite corridors make with t
edge of the sample. Qualitatively, the appearance of th
singularities can be argued as follows. As is well known,
periodic system corresponding to the one we are studyin
ergodic, so that all allowed positions and all directions a
eventually equally probable. In the finite system we a
studying, this is no longer the case. In particular, near
edges, the relative weight of the directions leading to esc
will be different from the other ones. Nevertheless, we m
at first start with the approximation that, at least as long
particles enter reasonably deep into the system, the hyp

FIG. 8. The quantitiesbT(f/p) ~d! and2bR„(p2f)/p… ~n!
vs f/p for w51.5 andN5107. The values forbT are extracted
from data withL5100 and those forbR are determined by subtrac
tion of data withL5200 and 100.
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esis of equidistribution of velocity directions holds to a go
approximation. Then we may estimate the transmission
efficient as a function of angle by means of the fraction
surface area from which trajectories escape at that angle~we
may assume that the transverse direction of the gas is m
finite by some device such as periodic boundary conditio!.
This yields a singularity in the angular dependence of
transmission coefficient near the critical angles whenL
→`.

VI. EFFECT OF ISOTROPIC INCIDENCE

The following apparent difficulty motivated us also
study the case in which the particles are isotropically in
dent upon the slab: In Sec. V, we reported numerical
theoretical evidence for the existence of a logarithmic c
rection to the mean survival time. Yet a quite general ar
ment appears to show that such a correction is imposs
Consider the phase space on a constant energy shell in
the Lorentz array. The volume of this phase space, wh
clearly scales asL, can be expressed as the integral of t
time of residence inside the system over all points of en
~this relation is known as the Katz formula@18#!. Since the
volume of trajectories that remain forever confined to
system is zero, and the volumes of those entering from
left and right are equal, it follows that the mean survival tim
scales asL, in contradiction to what was numerically ob
served in Sec. V, as well as to the predictions of the Le´vy
flight model.

If we consider the above argument carefully, however,
see that it only applies if all angles of incidence are taken
equally probable. To understand why this might make a
ference, one should note the following: If all angles a
equally probable, then the distribution of initial step lengt
will have a singularity due to the probability of launching th
particle with an angle very close to critical and an approp
ate impact parameter. This leads, as is readily seen, to
probability for a large initial step length ofx going asx22.
This behavior is in marked contrast to the step probabi

FIG. 9. The quantitiesbT ~curve on the left! andaR ~curve on
the right! vs f/p for w51.5, N5106. The features expected a
f5p/6 and f55p/6 are clear. There is also a peak atf
'arctan&, for which we have no explanation.
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distribution within the interior of the system, for which th
impact parameter and the angle are interrelated. For thes
was pointed out before, the probability of a large stepx goes
asx23.

In order to clarify these issues, we performed simulatio
on the system with isotropic incidence. Indeed, as expec
from the above argument, the mean survival time was fou
to scale asL, without any logarithmic corrections~see Fig.
6!. On the other hand, the transmission coefficient was fo
to retain its peculiar behavior~see Fig. 5!. The above argu-
ment is therefore sound; it does not contradict the numer
work reported in Sec. V. On the contrary, since the tw
models show such clear differences with regard to their m
survival time, this seems to indicate that the distribution
initial step lengths may well have been the cause.

To test this final hypothesis, we also simulated a Le´vy
flight with a52 in which the first step has a distribution wit
an x22 tail, corresponding toa51. The results are again
very clear: the mean survival time now grows asL without
any logarithmic corrections. On the other hand, the transm
sion coefficient still has the previous anomalous behav
though it takes a somewhat longer time to reach it.

VII. CONCLUDING REMARKS

In this work we have examined the scattering propert
of a Lorentz gas incident on an array of scatterers cente
on a triangular lattice with a finite numberL of columns.
Much of our attention has focused on the scaling withL, for
large values ofL, of transport and optical properties, name
transmission and reflection coefficients, mean survival tim
and differential cross section. It should be emphasized
though most of the numerical results reported in this pa
were obtained for incidence along thex direction, exactly the
same phenomenon was observed in runs carried out at o
fixed incident angles. On the other hand, some signific
differences were found when the particles were launched
tropically in the infinite horizon case.

For our understanding of the observed numerical tre
we have considerably profited from the link, in some ca
formal, in others qualitative, to random walk processes. T
regimes are considered: the finite and infinite horizon ca
For the finite horizon case the transmission coefficient sc
with 1/L, the survival time withL, and the differential cross
section has no singularities and presents certain symm
properties. All this is in agreement with the behavior of no
mal diffusion and ordinary random walks with absorbin
boundaries.

The infinite horizon case, on the other hand, exhibits lo
rithmic corrections to the aforementioned scalings depend
on the incidence angle distribution~in this case the relation
to Lévy walks is illuminating!. Also, singularities appear in
the differential cross section at angles corresponding to
corridors inside the slab, for which we only have a part
understanding. A peculiar effect related to the difference
served between particles launched in one fixed direction
particles launched isotropically can also be explained
terms of a simple Le´vy flight model with a different distri-
bution for the initial step length. This allows an explanati
for the discrepancy in the behavior of the mean survi
time, which had been anticipated on quite general groun
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It is also of interest to understand the features of the f
motion length distribution. For the finite horizon case tw
peaks in such distribution are present at the valuesw and
)(21w)22, which correspond to the unstable periodic o
bits perpendicular to the disks. For the infinite horizon cas
set of peaks develops, whose number increases withw; the
slope of the envelope of the probability distribution is23.
The origin of such peaks, which most probably are related
other periodic orbits, remains to be analyzed.
es
e

-
a

to

ACKNOWLEDGMENTS

We thank R. Artuso, L. Benet, P. Dahlqvist, J. L. Lebow
itz, C. Mejı́a, T. H. Seligman, and L. A. Torres for fruitfu
discussions and suggestions. This work was partially s
ported by INFN, CONACyT, and DGAPA-UNAM unde
Contract Nos. IN103595, IN106597, and CIC, Cuernava
It is also part of the European Contract No. ER
CHRXCT940460 on ‘‘Stability and universality in classic
mechanics.’’
-

lk

ys.
@1# H. A. Lorentz, Proc. Amst. Acad.7, 438 ~1905!.
@2# G. Gallavotti, Phys. Rev.185, 308 ~1969!; E. H. Hauge, Lect.

Notes Phys.31, 337 ~1974!.
@3# Sh. Goldstein, J. Lebowitz, and M. Aizenman, Lect. Not

Phys.38, 112 ~1975!; G. Gallavotti,ibid. 38, 236 ~1975!; Ya.
G. Sinai, Funkts. Anal. Ego Prilozh.13, 46 ~1979!; L. Buni-
movich, Zh. Eksp. Teor. Fiz.89, 1452 ~1985! @Sov. Phys.
JETP62, 842 ~1985!#.

@4# L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys.78,
479 ~1981!; N. Chernov~unpublished!.

@5# J. Machta and R. Zwanzig, Phys. Rev. Lett.50, 1959~1983!.
@6# P. L. Garrido and G. Gallavotti, J. Stat. Phys.76, 549 ~1994!;

R. Artuso, G. Casati, and I. Guarneri,ibid. 83, 145 ~1996!.
@7# J. P. Bouchaud and P. Le Doussal, J. Stat. Phys.41, 225

~1985!.
@8# P. M. Bleher, J. Stat. Phys.66, 315 ~1992!.
@9# J. Machta, J. Stat. Phys.32A, 555 ~1983!; B. Friedman and R.
F. Martin Jr., Phys. Lett.105A, 23 ~1984!.
@10# P. Gaspard and G. Nicolis, Phys. Rev. Lett.65, 1693 ~1990!;

P. Gaspard and F. Baras, Phys. Rev. E51, 5332~1995!.
@11# P. Gaspard, Physica A240, 54 ~1997!.
@12# W. Feller, An Introduction to Probability Theory and its Ap

plications, 2nd ed.~Wiley, New York, 1971!, Vol. 2.
@13# G. H. Weiss,Aspects and Applications of the Random Wa

~North-Holland, Amsterdam!, 1994.
@14# A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, Ph

Lett. A 114, 317 ~1986!.
@15# P. Dahlqvist, Nonlinearity10, 159~1997!; P. Dahlqvist and R.

Artuso, Phys. Lett. A219, 212 ~1996!.
@16# J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@17# B. Eckhardt, Physica D33, 89 ~1988!.
@18# I. P. Kornfeld, Y. G. Sinai, and S. V. Fomin,Ergodic Theory

~Nauka, Moscow, 1980!.


