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We perform numerical scattering experiments on a Lorentz array of disks centered on a triangular lattice
with L columns, and study its transmission and reflection properties. In the finite horizon case, the motion of
the particles may be modeled as simple one-dimensional random walks with absorbing walls for which the
scaling of the transmission and reflection coefficients are known, and agree with those found numerically. In
the infinite horizon case the analogy with a simple diffusive process is no longer valid. In this case we compare
our results to those expected for a one-dimensionaly lvealk, again with absorbing walls, for which loga-
rithmic corrections to the scaling relations appear. These corrections are consistent with the numerical results.
The scaling withL and the symmetry properties of the forwarg(¢) and backwardrg(¢) differential cross
sections are also studied, and some of their salient features are dis¢@d<€#B-651X98)05310-0

PACS numbgs): 05.40:+j, 05.45+b, 05.60+w

[. INTRODUCTION have been shown to decay exponentigdlj; as confirmed by
numerical experimentgs]. In contrast, for the infinite hori-

The Lorentz gas is an ensemble of noninteracting poingon case the diffusion coefficient diverges logarithmically
particles which move freely with elastic reflections from [7.,8], and correlation functions have a power law def&ly
fixed scatterer§l]. It is a basic model for linearized kinetic We find that there are also fundamental differences in the
equationg 2], and its ergodic properties are well kno§j.  scattering properties for each case.

In this paper we present the results of numerical experiT Lorentz gases in f|n|te size geometries .have also been
ments in which a large number of particles are incident on afntroduced elsewhere, with the aim of studying escape rates
array of disks centered on a triangular lattice. The particle@nd their relation to transport coefficients and fractal repel-
are launched initially either in the-x direction or isotropi- €rs[10]. An account of these results, together with a formu-
cally toward the array, and are reflected elastically from thdation of the problem in terms of flux boundary conditions,
scatterers. The array of disks is finite in thelirection and ~ ¢an be found in Ref.11]. o _ '
infinite in they direction, so we speak of a “slab” of scat- In_ Sec. Il we |_ntroduce _all the definitions, and dls_Cl_Jss in
terers. Our slab is characterized by two parameters; the widtfetail the numerical experiments for the case of a finite ho-
of the slab, that is, the numbér of columns of scatterers, 1Zon. Section Il draws an analogy between the Lorentz scat-
and the separatiow between thentthe disk radius is unity tering experiments in _the f_|n|te h0.r|zon case and 'ghe behavior
The quantities that are measured are the transmigsiand of'one-dlrnensmnal dlffuswe.motlon with absor_blng bound-
reflection R coefficients, the mean survival timeof par-  @res. This serves as a basis for an explanation of the ob-
ticles in the slab and the transmittedt and reflectedog s_erved scaling laws for transmission coefﬂuents_ar_wd_ survn/_al
differential cross sections. These quantities are analyzed 4&nes- In Sec. IV we present the results for the infinite hori-

functions of the parameters characterizing the slab. zon case when the particles are launched initially in>he
If the separation between scatterersn a triangular lat- direction. These show logarithmic corrections to the scaling

tice is smallw<w.=0.3094 . ., thelength of free motion laws, which are consistent with considering the motion of the
of the point particles is bounded, that is, the particles ugeerparticles within the slab as a ing walk. In Sec. V we discuss

a finite horizon. On the other hand, when<w the length angular dependences and symmetries of the transmission and
' reflection differential cross sections. In Sec. VI we discuss

of free motion may be unbounded, the particles see an infi- - : .
nite horizon. In this work we study the scattering properties?W Some of the scattering properties are affected by sending

in both situations, and analyze our results in terms of thdN€ particles isotropically, i.e., with an incidence angle uni-
characteristic motion of the particles in each case. In thdormly distributed betweer- m/2 and /2. A modified ran-

finite horizon case, the motion of the particles is known to bedom walk model displaying these same differences is also
diffusive [4] and the diffusion coefficient can be estimated briefly discussed. Finally, Sec. VIl is devoted to discussion
with ergodic argument§5]. Velocity correlation functions ©f the results and conclusions.

II. SCATTERING WITH A FINITE HORIZON

*Electronic address: rrs@mazatl.cie.unam.mx The scatterers we consider are disks of unitary radius cen-
"Electronic address: ruffo@ing.unifi.it tered on a triangular lattice as shown in Fig. 1. The distance
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FIG. 1. Slabs of scatterers in a triangular arr@).Finite hori-
zon,w=0.3, withL=5. (b) Infinite horizon,w=1, with L=5.
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between neighboring centers ist+2, and the centers lie L
alongL lines parallel to they axis. The slab is finite in the FIG. 2. Logarithmic plot of the transmission coefficiéhtas a
direction and infinite in the direction. A large numbeN of ¢ nction of the size of the systein, for w=0.1 andN=4x 10,
particles are incident from the left parallel to thexis with  \y=0.15 andN=2x10", and forw=0.2, 0.25, and 0.3 wittN
unit speed. The particles move freely except for elastic col—1¢7. The full lines are the least square fits, all of them compatible
lisions at the boundary of the disks. In the experiments, theith the theoretical predictiofi~L ~* to within 1%.
dynamics is solved by considering the motion in the elemen-
tary Wigner-Seitz hexagonal cell where opposite sides aréal scattering cross sections by considering < /2 and
identified. Each incident particle has a different impact paq¢|> m/2, respectively.
rameterb, defined here as the distance between the initial In Fig. 2 we show the dependence of the transmission
position and the horizontal line passing through the center ofoefficientT on L for the finite horizon case. These results
the scatterer in the Wigner-Seitz cell. Due to the symmetryare consistent with the scaling laW~L ~#, where g~1
of the slab, it is sufficient to considdr between 0 and 1 independently ofnv. This behavior will be justified in Sec.
+w/2. The trajectory in the slab is obtained by unfolding thelll, drawing from an analogy with random walks. Sin&e
orbit in the Wigner-Seitz cell. The cases where particles are=1—T andT scales to zero with ,R does not depend dn
incident with an angle different from zero, and the effect offor L>1. Another quantity of interest is the mean survival
isotropic incidence will be briefly discussed in Sec. VI. time inside the slab. This average time is evaluated over all

In the finite horizon case, Qw<w,=(4W3—2) theN incident particles no matter if they are transmitted or
=0.3094. .., the particles that enter the scatterer cannotreflected. We find that~L? with y~1, as we show in Fig.
travel long distances without suffering collisions. In the in- 3.
finite horizon casev.<w the particles may travel arbitrarily

far between collisions, due to the opening of infinite corri- ||. DIFFUSIVE BEHAVIOR IN FINITE SIZE SYSTEMS
dors. Ifw,<w<2, the infinite corridors lie at angles af/6, . . . o .
/3, andw/2. We will be mainly considering particles inci- In the finite horizon case, rigorous results, convincing evi-

dent parallel to the axis that cannot cross the slab without dence, and plausible arguments have been set forth indicat-
collisions whenw<2.

Since the slab is infinite in thg direction and the colli-
sions are elastic, every particle that enters the slab mus
eventually exit it, except for a set of measure zero which ¢ }
goes asymptotically to periodic orbits inside the slae
disregard all zero measure sets hereaff#nus, in practice, a
particle that enters the slab collides with some of the ob-
stacles, and will be ultimately transmitted or reflected, leav-;
ing the slab with an anglé measured with respect to thex
direction. Particles are transmitted if they exit the slab from
the right (¢|</2), and are reflected if they exit from the
left (| p|>w/2).

A first characterization of the system is through the com-
putation of the transmission and reflectionR coefficients. 10
The former is defined as the fraction of particles that pass
through the slab and exit on the right, and the latter as the 1o 10°
particle fraction that exits the slab on the léftbviously T L

+R=1). A finer quantity is the differential scattering cross  F|G. 3. Logarithmic plot of the survival imevs L for the same
sectiono defined by saying that(¢)d¢ is the fraction of  values ofw andN as in Fig. 2. The full lines are the least square
particles scattered betweehand ¢+d¢. We can separate fits, all of them compatible with the theoretical predictier L to
this quantity in the transmittea; and reflectedry differen-  within 1.6%.
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ing that the motion of the particles in the Lorentz system carcompared to the system si2¢ and the number of steps
be accurately modeled as a simple random WAlK]. Inits  given by the random walker scales linearly with tirfies.,
simplest version the particles can be viewed as hopping behere are no long tail waiting time distributions
tween adjacent “cages” in an essentially uncorrelated fash- We can identify the quantities appearing in E¢B. and
ion, and staying in each cage for a well defined average timg4) corresponding to the Lorentz scattering experiment. The
For the case under study in this paper it is not even necessadjffusion coefficientD is computed in Ref[5] in a random
to consider the random walk process as occurring on a twowalk approximation, and numerically through the Green-
dimensional lattice, since the quantities we are interested iKubo relation. The lengttX is related tow and L by X
can be calculated from the projection of the walk onto the=L(2+w)v3/2, and thus the penetration lengthcan be
finite directionx. determined by the slope of the dependence-oh L as in
While the discrete one-dimensional random walk on a fi-Fig. 3. The results are consistent with the distance between
nite lattice can be described completéhy?,13, such a de- traps (2+w)/v3, as defined in Ref.5], for small values of
tailed comparison between the two systems cannot hold. A% (where the diffusion constant predicted in the random
the random walk is an analogy to the Lorentz system, thevalk approximation also agrees with the numerically deter-
best we can realistically expect to determine from it is themined ong.
scaling behavior of the quantities under study. With this in
mind, we choose to evaluate the transmission and reflection
coefficients for the simple random walk problem via the dif-
fusion equation, with a numerically determined phenomeno- When the horizon becomes infinite the analogy to the
logical diffusion constantD. This equation describes the simple diffusive process breaks down. This occurs as a con-
evolution of the coarse grained particle density in the systensequence of the opening of infinite corridors between scat-
and is expected to be valid when the system size is mucterers in which the particle is capable of traveling very large
greater than the root mean squdrms) step length. Once distances between collisions. The distribution of the length
again, since the slab is translationally invariant alongythe of these sojournsp(r), has been shown to decay &s®
axis, the coarse grained particle density obeys a diffusionvhenr —co by both numerical results and theoretical argu-
equation along. ments[7,14,8,15. Thus the rms step length diverges, and the
To estimate the reflection and transmission coefficientsliffusive approximation described in Sec. Il breaks down.
within this approximation, we require the solution of the dif-  If we insist on making a random walk description of the
fusion equation with absorbing boundary conditionsxat system, we are now led to consider a random walk with a
=0 andx=X, and a constant unit input flux at siée In the  distribution of step lengths without second momé&generi-
steady state, the magnitude of the fluxes at 0Xndll give cally called “Levy flights” [13,16]). Here one sometimes
the splitting probabilities, i.e., the probability that a particle makes the distinction between a discrete time process, in
injected at positiora will be absorbed at the origin or &.  which each step is selected from a power-law distribution of
In our scattering system the particles are incident on the leflengths, but always takes a fixed time and the so-calley Le
which can be thought of as having the injection p@mear  walk in which each step takes a time proportional to its
the origin. Then the calculation outlined above yields thelength. This latter, while more relevant to the case we are
transmission coefficient discussing, is not significantly different from théweflight
if the first moment of the step size distribution exists, as it
T=alX. (1) certainly does in our case. We shall therefore ignore the con-

) ) ] ) .. siderable complications this causes and often identify time
To estimate the mean survival time of the particles withinith the number of jumps or collisions.

the slab, we recall that within the diffusion approximation, |, contrast to the diffusive case, the derivation of the

the_ SL_JrvivaI time f(_)r a random walker starting at positen ansmission coefficient in the case ofwyeflights appears

satisfies the equatioi3] not to have been treated in the literature. We present an

d2r(a) argument which leads to a_scaling predictipn_ Wh_ich seems
D ——-=-1, ) reasonable for general uy; flights, and specialize it to the
da case we are concerned with.
A random walker with step distribution given by(r)
~r~ (% travels a typical distancel6]

IV. INFINITE HORIZON

with the conditions7(0)= 7(X)=0, whereD is again the
diffusion constant of the process. Thus
1 t2e for 1<a<2
7(a)=sgaX-a), (3 £~{tint for a=2
t for a>2
and if the injection point is taken to be close to the origin. . i
(a<X), we obtain in time t. If 0<a<2 we have a Ley flight.
' If we assume that the particle is initially at a poiat
~aX/2D. (4) sufficiently near the origin §<X), then we can invoke
Sparre-Andersen’s theorgrb2]. This theorem states that the
These results can also be obtained on a more general fogtrobability that the walker steps for the first time to the left
ing through Wald'’s identity13], and are expected to hold as of the pointa at thenth step is a universal functiofr(n),
long as the rms step size of the random walk is smalwhich is completely independent of any of the properties of
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FIG. 4. The probability distributionr(n) of leaving the system FIG. 5. The logarithmic correction @ is shown by plotting the
to the left aftern collisions, forw=1.5, and from left to right_ quantity [ (LT(L))?— (100T(100))?]/(100T(100)? vs In(L) for w
=100, 500, 1000, and 1500 ard=10". The Sparre-Andersen =0.1 with N=4x10’, and w=0.6, 1.0, 1.5, and 2.0 witiN
scaling result is shown by the dashed lines. =10". Straight lines with nonzero slope, indicating the logarithmic

) ) ) _correction, are expected fav above the infinite horizon. The's
P(r), as long asP(r) is symmetric and continuous. This correspond to isotropic incidence, discussed in Sec. VI, with

distribution is found to decay as(n)~n~3for any kind of =15 andN=5x10%. The lines are meant as a guide to the eye.
unbiased walk whatsoever, in particular for thevizdlights

we are concerned with. This allows us to estimate straightgne gimylation fow= 1.5 (infinite horizon together with the
forwardly the behavior of Ley flights both as regards their Sparre-Andersen scaling law. The agreement is good even
transmission and the mean survival time in the interval CONfor small values of.

sidered. The scaling laws for the transmission coefficient and for

_ The scaling behavior of the transmission coefficient of e mean survival time can also be also tested for the Lorentz
Levy walk across a finite system of lengk can be esti- oo i the infinite horizon case. In Fig. 5 we shoiL}? for

mated as follows: Denote by,(X) the time required for the 5 et ofw values as a function of Ihj. According to our
walker to travel a distance of ord&rwith appreciable prob- theory (TL)?~In(L) for w,<w. In Fig. 6 we show ¢/L)? as
ability. The transmission coefficient is then the probablhtya function of In() in order put into evidence the predicted
that the walker never steps left of the origin during(X). logarithmic correction.

From the above scaling relatiom,(X) is expected to scale " ng were also carried out at other fixed incidence angles,

a 2 — 2
as X for 1<a<2, asX®/In X for @=2 and asX® for @  gnq the same features as described above were obtained. We
>2, which corresponds to normal diffusion. Then, in termspave thus shown that, given a fixed angle incidence, the
of 7,(X), the transmission coefficient is given by

[’

TX)~ > w(n)~rx)t3’2dt~1/\/ra(X). (5) 040 |

n=r1,(X) N O--0Ow=01 o9
i ®--ow=06 ,Q;g”
For a>2 we therefore obtain the behavior of the ordinary POy o
diffusive case treated in Sec. lll. In particular, for our infinite o.30 | O--Ow=20 oy

horizon Lorentz slab, we expe®(X)~ vIn X/X.

As for the survival time, it is estimated in a similar way:
The probability of leaving the intervdl0X] at timen is 0.20
given by7(n) as long as is not so large that leaving at the
right hand side becomes appreciably likely. This occurs at
times of the order ofr,(X). This reasoning gives, for the
mean first exit timer,

0.10

7a(X) S -
S na(n)~ 70, (6)  ocogE
n=1

which implies thatr(X) ~X/InX FIG. 6. The logarithmic correction teis shown by plotting the
The prediction for the probability distributiomr(n) of  quantity [(L/(L))2— (100/(100))2]/(100/~(100))? vs InQL) for

leaving the slab to the left after collisions based on the the same values af andN as in Fig. 5. Again, straight lines with

Sparre-Andersen theorem can be tested for the Lorentz gasonzero slope are expected ferabove the infinite horizon. Thes

it is valid both for the finite horizon case and for the infinite correspond to isotropic incidence, discussed in Sec. VI, with

horizon. In Fig. 4 we show this distribution as obtained from=1.5 andN=5x10°. The lines are meant as a guide to the eye.
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FIG. 7. The quantitieb(#/7) (@) and —bg((7— ¢)/7) (A) FIG. 8. The quantitie®(¢/m) (®) and —bg((7— ¢)/7) (A)

vs ¢/ 7 for w=0.3 andN=10". The values forb; are extracted vs ¢/ for w=1.5 andN=10"’. The values fob; are extracted

from data withL =100, and those fobg are determined by sub- from data withL =100 and those fobg are determined by subtrac-
traction of data withL =200 and 100. tion of data withL =200 and 100.

opening of the horizon appears to produce logarithmic corsample. If we now look at the distribution of angles of the
rections to the Scallng laws present for finite horizon. ThlSpartides which go to the left in these circumstances, it is
feature is shared by the behavior of other quantities whiclyiven by the superpositionor(7— ¢)+ or(d)=ar(e)

also present logarithmic corrections, such as the difoSionJr[bR(¢)/L]+[bT(q-r—¢)/L]+--- . Now, by symmetry,
coefficient. the above setup is equivalent to having particles incident
only from the left and a reflecting wall at the middle of the
V. ANGULAR DEPENDENCE OF FORWARD AND sample. However, from the fact that a particle traveling deep
BACKWARD SCATTERING into the slab eventually loses memory of its original inci-

dence direction, it follows that the trajectory of a particle
Feflected on the wall is indistinguishable from the trajectory
of a particle traveling in a semi-infinite system and eventu-
ally returning across the position of the walthich occurs

ith probability ). Thus, given that the correlation with the
nitial incidence is small enough, the system with the reflect-
ing wall will not show any great difference from the semi-
infinite system [ =) as far as the angular distribution of
its particles is concerned. This then allows one to derive the

We have already observed that for fixed incidence angl
the transmission coefficient scales ds i the finite horizon
case, whereas it scales gl L/L in the case of infinite ho-
rizon. It is also instructive to look in somewhat greater detail
at the angular distribution of the transmitted and reflecte
particles(this is what is also done in chaotic scattering ex-
periments with fewer scatteref47]). We definecr(¢) as
the density of particles reflected at angleando+(¢) simi-
larly for the transmitted particles. Due to the symmetry

identit
— — ¢ the range of¢ will be from 0 to #/2 for transmitted y
particles, and fromw/2 to 7 for those that are reflected. As br( @) +br(7— o)
these distributions are also dependentLgrwe further pro- ar(¢p)=ar(¢)+ 3 +-, (10

pose that in the finite horizon case they can be expanded as

be( &) from which the result follows. Numerically, this is quite well
R . C o i
or(d)=ar(d)+ NI (7) ~ borne out both in the case of finit€ig. 7) and infinite ho
L rizon (Fig. 8).
In the case of an infinite horizon, another striking feature

and of the angular distribution function is found: there is a clear
br( ) peak inbt around the valuep.= 7/6, as well as a corre-
or(p)= TL 4o (8) sponding dip inag around the valuep.=5/6 (see Fig. 9

which are the angles the infinite corridors make with the

The leading term in the transmission cross section is zer8.dge Of. t.he sample. Qualitatively, the appearance of these
since there is no transmission for infinite The following singularities can be argued as follows. As is well known, the

relation has then been found to hold in all cases for suffiperiOd_iC system corresponding o the one we are st_udying is
ciently largeL (see Fig. J: ergodic, so that all allowed positions and all directions are

eventually equally probable. In the finite system we are
br(@)=—br(7—¢). (9)  studying, this is no longer the case. In particular, near the
edges, the relative weight of the directions leading to escape

This symmetry relation can be understood as follows: Imagwill be different from the other ones. Nevertheless, we may
ine that the slab is subjected to a continuous flow of particlest first start with the approximation that, at least as long as
with identical distributions incident fronoth sides of the particles enter reasonably deep into the system, the hypoth-
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10" ; ; . ; distribution within the interior of the system, for which the
impact parameter and the angle are interrelated. For these, as
was p3ointed out before, the probability of a large stegpes
asx”>.

In order to clarify these issues, we performed simulations
10 L | on the system with isotropic incidence. Indeed, as expected
from the above argument, the mean survival time was found
to scale ad., without any logarithmic correctionsee Fig.
/f/ 6). On the other hand, the transmission coefficient was found

to retain its peculiar behavigsee Fig. 5. The above argu-

S| | ment is therefore sound; it does not contradict the numerical

work reported in Sec. V. On the contrary, since the two

models show such clear differences with regard to their mean

survival time, this seems to indicate that the distribution of

, initial step lengths may well have been the cause.
00 02 o o8 10 To test this final hypothesis, we also simulated ayte

flight with =2 in which the first step has a distribution with

FIG. 9. The quantitie®r (curve on the leftandag (curve on  an x~2 tail, corresponding tax=1. The results are again
the righy vs ¢/a for w=1.5, N=10°. The features expected at very clear: the mean survival time now growslasvithout
¢=ml6 and ¢=5m/6 are clear. There is also a peak &t  any |ogarithmic corrections. On the other hand, the transmis-
~arctanv2, for which we have no explanation. sion coefficient still has the previous anomalous behavior,

though it takes a somewhat longer time to reach it.
esis of equidistribution of velocity directions holds to a good
approximation. Then we may estimate the transmission co-
efficient as a function of angle by means of the fraction of VIl. CONCLUDING REMARKS

surface area from which trajectories escape at that dngle In this work we have examined the scattering properties
may assume that the transverse direction of the gas is madg 5 | orentz gas incident on an array of scatterers centered
finite by some device such as periodic boundary condilions o, 4 triangular lattice with a finite numbér of columns.
This yields a singularity in the angular dependence of thych of our attention has focused on the scaling wittor
transmission coefficient near the critical angles when large values of., of transport and optical properties, namely,
— . transmission and reflection coefficients, mean survival time,
and differential cross section. It should be emphasized that
though most of the numerical results reported in this paper
were obtained for incidence along thalirection, exactly the

The following apparent difficulty motivated us also to same phenomenon was observed in runs carried out at other
study the case in which the particles are isotropically inci-fixed incident angles. On the other hand, some significant
dent upon the slab: In Sec. V, we reported numerical andlifferences were found when the particles were launched iso-
theoretical evidence for the existence of a logarithmic cortropically in the infinite horizon case.
rection to the mean survival time. Yet a quite general argu- For our understanding of the observed numerical trends
ment appears to show that such a correction is impossibleve have considerably profited from the link, in some cases
Consider the phase space on a constant energy shell insiftemal, in others qualitative, to random walk processes. Two
the Lorentz array. The volume of this phase space, whiclegimes are considered: the finite and infinite horizon cases.
clearly scales a&, can be expressed as the integral of theFor the finite horizon case the transmission coefficient scales
time of residence inside the system over all points of entrywith 1/L, the survival time withL, and the differential cross
(this relation is known as the Katz formul&8]). Since the section has no singularities and presents certain symmetry
volume of trajectories that remain forever confined to theproperties. All this is in agreement with the behavior of nor-
system is zero, and the volumes of those entering from thenal diffusion and ordinary random walks with absorbing
left and right are equal, it follows that the mean survival timeboundaries.
scales ad., in contradiction to what was numerically ob-  The infinite horizon case, on the other hand, exhibits loga-
served in Sec. V, as well as to the predictions of theyLe rithmic corrections to the aforementioned scalings depending
flight model. on the incidence angle distributigim this case the relation

If we consider the above argument carefully, however, weo Levy walks is illuminating. Also, singularities appear in
see that it only applies if all angles of incidence are taken athe differential cross section at angles corresponding to the
equally probable. To understand why this might make a dif-corridors inside the slab, for which we only have a partial
ference, one should note the following: If all angles areunderstanding. A peculiar effect related to the difference ob-
equally probable, then the distribution of initial step lengthsserved between particles launched in one fixed direction and
will have a singularity due to the probability of launching the particles launched isotropically can also be explained in
particle with an angle very close to critical and an appropri-terms of a simple Ley flight model with a different distri-
ate impact parameter. This leads, as is readily seen, to thHmution for the initial step length. This allows an explanation
probability for a large initial step length of going asx 2. for the discrepancy in the behavior of the mean survival
This behavior is in marked contrast to the step probabilitytime, which had been anticipated on quite general grounds.

10

VI. EFFECT OF ISOTROPIC INCIDENCE
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